Mumps

Mumps

 

 Jeryl Lynn strain:

 

There are more than ten mumps vaccine strains have been used throughout the world, such as Jeryl Lynn, Urabe, Hoshino, Rubini, Leningrad-3, L-Zagreb, Miyahara, Torii, NK M-46, S-12 and RIT 4385. In Japan and Europe, some manufacturers produce a live mumps vaccine containing the Urabe Am9 virus strain. Due to concerns about vaccine-associated meningitis, several countries stopped using Urabe vaccine strain (WER 1992). Some vaccines have a more limited distribution. The mumps vaccines are cultured in various ways. The viruses can be cultured in chick embryo fibroblasts, such as the Jeryl Lynn and Urabe strain containing vaccines, or quail and human embryo fibroblasts are also used for some vaccines.

 

Vaccines:

  

MUMPSVAX® (MUMPS VIRUS VACCINE LIVE)

JERYL LYNN™ STRAIN 

Package Insert

 

M-M-R® II (MEASLES, MUMPS, and RUBELLA VIRUS VACCINE LIVE)

Jeryl Lynn** (B level) strain

Package insert

 

ProQuad® Measles, Mumps, Rubella and Varicella Virus Vaccine Live

MMRV(Measles, Mumps, Rubella, Varicella) 

Has been suspended.

 

ProQuad* is a combined attenuated live virus vaccine containing measles, mumps, rubella, and varicella viruses. ProQuad is a sterile lyophilized preparation of (1) the components of M-M-R*II (Measles, Mumps and Rubella Virus Vaccine Live): Measles Virus Vaccine Live, a more attenuated line of measles virus, derived from Enders’ attenuated Edmonston strain and propagated in chick embryo cell culture; Mumps Virus Vaccine Live, the Jeryl Lynn™ (B level) strain of mumps virus propagated in chick embryo

cell culture; Rubella Virus Vaccine Live, the Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts; and (2) Varicella Virus Vaccine Live (Oka/Merck), the Oka/Merck strain of varicella-zoster virus propagated in MRC-5 cells. The cells, virus pools, bovine serum, and human albumin used in manufacturing are all tested to provide assurance that the final product is free of potential adventitious agents.

ProQuad, when reconstituted as directed, is a sterile preparation for subcutaneous administration.

Each 0.5-mL dose contains not less than 3.00 log10 TCID50 (50% tissue culture infectious dose) of measles virus; 4.30 log10 TCID50 of mumps virus; 3.00 log10 TCID50 of rubella virus; and a minimum of 3.99 log10 PFU (plaque-forming units) of Oka/Merck varicella virus.

 

 WHO Position paper on Mumps vaccines

Feb 2007: Mumps vaccines; studies on immune responses, efficacy and effectiveness

 

Mumps virus strains used for vaccine

At least 10 strains of the mumps virus are in use throughout the world for live attenuated vaccine. The first vaccine strain to be developed, and that most often used, is the Jeryl Lynn strain which was named after the child from whom the virus was isolated. It was developed in the USA by passaging seven times in embryonated hen’s eggs and ten times in chick embryo cell cultures. At the initial level of attenuation, lower than that used in the final vaccine, the Jeryl Lynn strain produced parotid swelling in some vaccinees what was the indicating that the vaccine strain was not suffficiently attenuated. This parotid swelling was not seen after additional passages at the B level of attenuation. Since December 1967, a live attenuated Jeryl Lynn vaccine has been manufactured and distributed by an American company…

In the USSR in the 1950s, the Leningrad-3 strain was developed by Smrodintsev and Klyachko in guinea pig kidney cell culture, with further passages in Japanese quail embryo cultures. Vaccines based on this strain have been used in the former Soviet Union and other countries.

Leningrad-3 mumps virus was further attenuated in Croatia by adaptation and passages on chick embryo fibroblast cell culture. The new mumps strain has been designated L-Zagreb. This strain is used in Croatia and India.

The Urabe strain of live mumps vaccine was first licensed in Japan and thereafter in Belgium, France, and Italy. It is produced either in the amnion of embryonated hen’s eggs or in chick-embryo cell cultures and has been used successfully in Japan and other countries. Its immunogenic properties are similar to those of the Jeryl Lynn strain.

The other strains are used to produce vaccines on a limited local scale. Hoshino, Torii and NKM – 46 strains are said to have characteristics similar to those of the Urabe strain. Mumps vaccine strains have been attenuated on different cell-culture systems and it was originally thought that they are were equally capable of inducing high levels of immunity. Recent observations, however, suggest that some vaccines based on the Rubini strain, approved in 1985 in Switzerland, have lower efficacy than those based on the Jeryl Lynn or Urabe strains. One possible explanation for a low protective efficacy of the Rubini strain may be the high number (> 30) of passages attained during its attenuation process. Vaccines prepared from various strains may differ in their capacity to cause adverse events; meningitis associated with MMR vaccine containing Urabe strains has led to the withdrawal of Urabe-containing vaccine from several countries.

A killed mumps virus vaccine that was licensed in the United States in 1948 and used from 1950 to 1978, found little acceptance because it induced only short-term immunity of low protective efficacy. Since then, live, attenuated mumps virus vaccines have been developed in Japan, the Russian Federation, Switzerland and the United States. The vaccines are scheduled for either one or two doses, the first given at 12–15 months of age and the second at 9–12 years of age. They are available as monovalent, bivalent measles-mumps (MM) vaccines and trivalent measles-mumps-rubella (MMR) vaccines. WHO requirements do not specify the minimum amount of vaccine virus that one human dose should contain. Rather, this is determined by the national control authority of the country where the vaccine is produced. Most of these vaccines contain more than 1000 cell-culture infective doses of attenuated mumps virus per dose…

The incidence of vaccine-associated cases of aseptic meningitis ranges from 0.1–1 per 100 000 doses of the Jeryl Lynn mumps vaccine.The Leningrad-3 vaccine strain developed in the former Soviet Union is propagated in guinea-pig kidney cell culture and further passaged in Japanese quail embryo culture…

Passive surveillance and retrospective reviews indicate an incidence of 20–100 cases of aseptic meningitis per 100 000 doses of MM vaccine based on the Leningrad-3 strain. The Leningrad-3 strain has been further attenuated in Croatia by adaptation to chick embryo fibroblast cell culture. The new strain designated L-Zagreb is used in Croatia,India and Slovenia. Studies of L-Zagreb in Croatia revealed protective properties equivalent to those seen with the Leningrad-3 strain and also the incidence of vaccine associated aseptic meningitis remained largely the same (2–90 per 100 000 doses of MMR). 

Live mumps vaccine based on the Urabe strain was first licensed in Japan and then in France, Belgium and Italy. The Urabe strain is produced either in the amnion of embryonated hens’ eggs or in chick embryo cell cultures…

A possible association of the Urabe strain with vaccine-induced meningitis has resulted in its withdrawal from some countries. Studies up to 1993 identified an incidence of approximately 100 cases of aseptic meningitis per 100 000 doses of MMR containing the Urabe mumps strain. However, the rates differed by manufacturer. 

The Rubini strain was first licensed in Switzerland in 1985. It was developed by passage in a human diploid cell line, serial passaging in embryonated hens’ eggs and then adapted to the MRC-5 human diploid cell line. Recent observations with the vaccine based on the Rubini strain suggest that this vaccine has lower efficacy than those based on the Jeryl Lynn or Urabe strains. A three-year study in Switzerland showed that the Rubini strain conferred only 6.3% protection whereas the Urabe and Jeryl Lynn based vaccines achieved 73.1% and 61.6% efficacy respectively.In another study the corresponding figures were 12.4%, 75.8% and 64.7%.

An explanation for these poor results may be the high number of passages (>30) resulting in an overly attenuated vaccine strain. Furthermore, the manufacturer of the Rubini strain vaccine now recommends a second dose at four to six years of age. Data on the protective efficacy of this schedule are currently not available. Attenuated mumps virus strains that are used on a limited scale only include the Hoshino, Torii and NKM-46 strains. They are reported to possess immunogenic properties similar to the Urabe strain.

An Evaluation of the Rubini, Urabe AM9, and Jeryl-Lynn Mumps Vaccines, Specifically Concerning Efficacy and Association with Aseptic Meningitis

Comparison of the Neurovirulence of a Vaccine and a Wild-Type Mumps Virus Strain in the Developing Rat Brain   Journal of Virology, October 1998, p. 8037-8042, Vol. 72, No. 10

 

The risk of aseptic meningitis associated with the Leningrad-Zagreb mumps vaccine strain following mass vaccination with measles-mumps-rubella vaccine, Rio Grande do Sul, Brazil, 1997

Abstract

Background Few data are available on the risk of aseptic meningitis following vaccination with the Leningrad-Zagreb (L-Z) strain of mumps vaccine. In 1997 the mumps vaccine was introduced into the state of Rio Grande do Sul in Brazil through mass vaccination with mumps-measles-rubella (MMR), targeting children aged 1–11 years. Five municipalities used exclusively MMR vaccine containing the L-Z strain of mumps. An outbreak of aseptic meningitis was observed shortly after the mass campaign.

Methods To estimate the risk of aseptic meningitis associated with this strain, we analysed vaccination and meningitis case surveillance data from the selected municipalities. A case of vaccine-associated aseptic meningitis was defined as one with a pleocytosis of 10–1500 leukocytes/ml and occurring within 15–35 days after vaccine receipt.

Results We estimated a risk of 2.9 cases per 10 000 doses of L-Z administered, equivalent to 1 case per 3390 doses administered. The overall risk of aseptic meningitis following the campaign was increased 12.2-fold (95% CI: 6.0–24.7) compared with the same period in 1995–1996. Following the mass campaign, the incidence of mumps declined 93% during 1998–2000.

Conclusions Vaccination with the L-Z strain of mumps vaccine as part of a mass campaign was associated with a significantly increased risk of aseptic meningitis. Decisions about type of mumps vaccine and mumps vaccination strategies must consider vaccine safety issues in addition to other criteria.

Autism Explosion Followed Big Change in MMR Shot


(By Dan Olmsted January 13, 2009)
 

 

 

In 1990, Merck & Co., manufacturer of the mumps-measles-rubella vaccine known as the MMR, made a significant but little-noticed change: It quadrupled the amount of mumps virus in the combination shot, from 5,000 to 20,000 units. Then in 2007 it reversed course, reducing the amount to 12,500 units. Neither the measles nor the rubella (German measles) component of the MMR was changed at all — each remained at 1,000 units throughout.
Merck also makes the single-component mumps shot, and in 1990 it also increased the potency of that shot by the same amount, from 5,000 to 20,000 units. But unlike the MMR shot, the standalone mumps shot’s potency was not scaled back in 2007. It remains at 20,000 units…

 

Killed Mumps Vaccine:

 

Mumps virus vaccine. (Calif Med. 1969 November; 111(5): 413–414.)

 

killedmumpsvaccine

 

 

 

Advertisements

Rubella Strains

Rubella

 

Global Measles and Rubella Laboratory Network, January 2004-June 2005

 

Seven genotypes and three additional provisional genotypes of rubella virus are recognized by WHO (Figure 2). These genotypes are classified into two clades (i.e., groups of similar genotypes), designated 1 and 2; clade 2 viruses have not been found circulating in the western hemisphere. Although knowledge concerning the geographic distribution of rubella genotypes has progressed substantially since 2003, the genotypes of rubella viruses present in many countries and regions remain unknown.

 

rubella2

 

 

Global strains of rubella virus

 

 

Based on analysis of the viral E1 gene, there are two genotypes of rubella virus: Genotype I is present in Europe, North America, and Asia; Genotype II is present in China, Israel and Korea and appears to co-exist with Genotype I viruses in these countries 14. While these genotypes differ by 7-11% at the nucleotide level, they differ by less than 3% at the amino acid level and are of the same serotype. Therefore, the biological significance of the evolution and maintenance of two genotypes is unclear. Following the widespread use of rubella vaccine in developed countries from the 1970s onward, a change in rubella strains occurred in which an

intercontinental genotype clade of Genotype I present in Europe, North America, and Japan replaced the geographic clades from each continent. There are still large areas of the world from which no rubella virus isolates have been analyzed (Africa, Australia, and most of mainland Asia) and thus there could be additional genotypes as well as unrecognized geographic clades of Genotypes I and II. It will be important to obtain a selection of rubella virus isolates from these regions before or concurrent with widespread introduction of rubella vaccination so that the pre-existing endemic virus genotypes can be identified…(Frey TK, Abernathy ES, Bosma TJ et al. Molecular analysis of rubella virus epidemiology across three continents, North America, Europe, and Asia, 1961-1997. Journal of Infectious Disease 1998;178:642-650).

 

EVOLUTION AND DISTRIBUTION OF RUBELLA VIRUS GENOTYPES

 

Rubella virus is a sole member of Rubivirus group of Togaviridae and its genotypes has been classified in 2004 at WHO meeting. They are genotype 1B, 1C, 1D, 1E, 1F , 2A and 2B as confirmed and 1a, 1g and 2c as provisional. They have unique chronological and geographical characteristics. Genotype 1a worldwide distributed in 1960s and 70s, however almost disappeared since 1980. Genotype 1B mainly has distributed in Europe and genotype 1C in North and South American continents. Genotype 1D has distributed mainly in Asia and genotype 1F is restricted in China. Genotype 1E looks to be derived from genotype 1D and recently becomes to be predominant circulating one worldwide since 1997. Genotype 1g looks to be derived from genotype 1B and distributes in Europe and Americas. Genotype 2A was restricted in China and 2B in Eurasia and Africa. Genotype 2c was found in Russia. Molecular epidemiological study of rubella virus genotype could reveal the transportation of rubella virus from a country to another country. It will greatly help to make a effective plan of rubella immunization program to eliminate and eradicate for a certain country.

Ancestor dating analysis resulted in 1942-46 for virus strains in genotype 1 and 1840 for those in genotype 2.

By these analysis shift of major prevailing genotype of rubella virus may happened in the history of this diseases, at least from genotype 2 to genotype 1 and genotype 1a to genotype 1E.

As rubella has no relating animal viruses as far as studied, this evolution and emergence is very curious to be known in the future.

 

 

Mapping of Genetic Determinants of Rubella Virus Associated with Growth in Joint Tissue

J Virol. 2000 January; 74(2): 796–804. PMCID: PMC111599

 

Rubella virus (RV), the etiologic agent of German measles, belongs to the family Togaviridae and is the only member of the genus Rubivirus. Natural infection in childhood causes a systemic illness characterized by a short-lived maculopapular rash and mild fever (50). The disease is generally benign, and infection is often asymptomatic. It is the teratogenic potential of rubella that brought the virus to the forefront of public health interests and provided the impetus for isolation of the virus and subsequent vaccine development (35, 49). The current vaccine strain RA27/3 has been very effective in reducing the incidence of congenital rubella syndrome in North America, where it is given to all children between 12 and 18 months of age. However like the wild-type strains and the earlier vaccine strain, HPV77/DE5, it is reported to be associated with acute and late-onset joint and neurological symptoms (20, 46, 47, 50).

The association of RV with acute, transient joint manifestations, after both natural infection and vaccination, has been recognized for many years (14, 23, 34, 46, 47). Rubella-associated arthritis (RAA) is usually short-lived, although a number of patients go on to develop chronic or recurrent pauci- or polyarticular symptoms which can persist for some time (7, 8, 22, 43, 45, 47). Studies to define the mechanism of pathogenesis of RAA have been limited by the fact that humans are the only natural host for RV and there is presently no animal model of infection. However, the frequency and intensity of clinical symptoms reported for wild-type (wt) and vaccine strains correlate directly with the ability of the infecting strain to propagate in organ cultures of human synovial tissue, suggesting that tropism for joint tissue is a measure of viral arthritogenicity (31). Although RV strains are genetically around 98% homologous, they display striking phenotypic variation in growth characteristics and plaque morphology as well as tropism for joint tissue (9, 31). The wt strains, such as Therien, which have the highest association with persistent joint symptoms (30%) (47), commonly replicate to titers of 106 to 107 PFU/ml in organ cultures of human joint tissue, comparable to the yields from the most permissive cell lines for RV. The vaccine strain RA27/3, which is associated with much lower levels of recurrent arthritis (4%) (47), is severely restricted in these cultures and does not attain titers greater than 103 PFU/ml. However RA27/3, like the wt Therien strain, was found to persist in joint culture for over 3 months (31). In contrast, no replication of the European vaccine strain, Cendehill, was detected in human joint tissue in this study. Cendehill strain is reported to have a very low association with acute arthritis and none with chronic joint manifestations (4). These results indicate a correlation between the arthrotropism of a specific RV strain and its ability to induce joint symptoms and lends support to the hypothesis that recurrent RAA is triggered by reactivation of virus which has established a persistent infection in the joint.

The Vaccines:

 

 

Soon after the rubella virus was first isolated in tissue culture in 1962, several live-attenuated vaccine strains were developed. HPV-77 (duck embryo), HPV-77 (dog kidney) and Cendehill (rabbit kidney) strains were originally licensed in the USA between 1969 and 1970. These vaccines were replaced in 1979 by RA 27/3 (human diploid fibroblast), which produces a strong immune response (similar to natural infection) of 95% or more. While rubella immunity induced by vaccination has been reported to persist for at least 16 years and probably to be lifelong, other recent data indicate that this immunity may wane after 8 years of age. [3] Rubella vaccine is usually offered in combination with measles (MR) or measles and mumps (MMR) vaccines. [1,5] This combination offers the same high levels of immunogenicity and safety as does its individual components. Most of the currently licensed vaccines are based on a live, attenuated strain of rubella virus known as RA 27/3. The vaccines are administered subcutaneously. To avoid interference with possible remaining maternal antibodies the vaccine is usually given at the age of 12-15 months. Attempts to develop killed virus vaccines or sub-component vaccines against rubella have not been successful…

 

MERUVAX* II

Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts.

(package insert)

 

BIAVAX® II (Rubella and Mumps Virus Vaccine Live) is a live virus vaccine for immunization against rubella (German measles) and mumps. BIAVAX II is a sterile lyophilized preparation of the Wistar RA 27/3 strain of live attenuated rubella virus grown in human diploid cell (WI-38) culture

PROQUAD -MMRV(Measles, Mumps, Rubella, Varicella)

Has been suspended.

 

ProQuad* is a combined attenuated live virus vaccine containing measles, mumps, rubella, and varicella viruses. ProQuad is a sterile lyophilized preparation of (1) the components of M-M-R*II (Measles, Mumps and Rubella Virus Vaccine Live): Measles Virus Vaccine Live, a more attenuated line of measles virus, derived from Enders’ attenuated Edmonston strain and propagated in chick embryo cell culture; Mumps Virus Vaccine Live, the Jeryl Lynn™ (B level) strain of mumps virus propagated in chick embryo

cell culture; Rubella Virus Vaccine Live, the Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts; and (2) Varicella Virus Vaccine Live (Oka/Merck), the Oka/Merck strain of varicella-zoster virus propagated in MRC-5 cells. The cells, virus pools, bovine serum, and human albumin used in manufacturing are all tested to provide assurance that the final product is free of potential adventitious agents.

ProQuad, when reconstituted as directed, is a sterile preparation for subcutaneous administration.

Each 0.5-mL dose contains not less than 3.00 log10 TCID50 (50% tissue culture infectious dose) of measles virus; 4.30 log10 TCID50 of mumps virus; 3.00 log10 TCID50 of rubella virus; and a minimum of 3.99 log10 PFU (plaque-forming units) of Oka/Merck varicella virus.

 

 

M-M-R® II (MEASLES, MUMPS, and RUBELLA VIRUS VACCINE LIVE)

 

Package insert

 Note:  “….contains attenuated live measles and mumps viruses propagated in chick embryo cell culture, plus “the Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts.”(1) Principal studies published in the American Journal of Diseases of Children and the American Journal of Epidemiology, reveal that the rubella strain was cultured from an aborted human fetus.(2,3) In addition, the growth medium for the three live viruses that are needed to produce the MMR vaccine is a buffered salt solution “supplemented with fetal bovine serum.”(4) Other ingredients include sucrose, phosphate, glutamate, recombinant human albumin, sorbitol, hydrolyzed gelatin stabilizer, and approximately 25 mcg of neomycin (an antibiotic).(5) The MMR vaccine does not contain a preservative. In fact, according to the FDA, MMR-II never contained thimerosal, a potentially dangerous chemical used in some vaccines.(6) However, trace amounts of mercury were detected in an earlier MMR formulation.”

 

Genomic sequence of the RA27/3 vaccine strain of rubella virus. 

Arch Virol. 1997; 142(6):1165-80. PMID: 9229006 [PubMed – indexed for MEDLINE]

 

The sequence of the genome of the RA27/3 vaccine strain of rubella virus (RUB) was determined. In the process, several discrepancies between the previously reported genomic sequences of two wild RUB strains (Therien and M33) were resolved. The genomes of all three strains contain 9762 nucleotides (nts), exclusive of the 3′ poly A tract. In all three strains, the genome contains (5′ to 3′), a 40 nt 5′ untranslated region (UTR), an open reading frame (ORF) of 6348 nts that encodes nonstructural proteins, a 123 nt UTR between the two genomic ORFs, a 3189 nt ORF that encodes the structural proteins, and a 62 nt 3′ UTR. The 5′ end of the subgenomic RNA was found to correspond to a uridine residue at nt 6436 of the genomic RNA. At the nucleotide level, the sequence of the three strains varied by 1.0 to 2.8%, while at the amino acid level, the sequence varied by 1.1 to 2.4% over both ORFs. The RA27/3 sequence will be of use in identification of the determinants of its attenuation, in vaccine production control and in development of second generation RUB vaccines based on recombinant DNA technology.

 

A comparative field evaluation of three live, attenuated rubella virus vaccines.

Am J Public Health. 1971 January; 61(1): 152–156.

 

*Before aborted fetal cell lines were used

 

rubella-strain

 

 

Countries using rubella vaccine, by WHO region, as of December 1999* (pg 69)

 

Rubella and congenital rubella syndrome: global update

 

rubella

 

 

Name That Strain

Measles

 

Edmonston strain:

Enders’ attenuated Edmonston strain. Edmonston wild-type (wt) measles virus (Parks et al., 2001). In 1954, the measles virus was isolated from an 11-year old boy from the US, David Edmonston, and adapted and propagated on chick embryo tissue culture (CE). The CE adapted strain, known as Edmonston A, was too virulent for vaccine purposes. The strain was attenuated by means of further passages on CE fibroblasts, resulting in a 2nd generation attenuated virus designated as Edmonston B. Again, the strain was too virulent to be applied on a large scale. Laboratories continued to pass Edmonston B on CE until a 3rd generation of more attenuated strains was developed. These strains, which are known by different names and differ from each other in the number of times the parent strain was passed on CE, provide the seeds for the vaccines now commercially available. The measles vaccines supplied through the World Health Organization’s programme on Immunization in the Americas are prepared from seeds derived from Edmonston B (EPI Newsl., 1980). GenBank Taxonomy No.: 11235

 

For more information on the various Edmonston strains

 

 

Schwarz strain:

Further passages of Edmonston A and B on chicken embryo fibroblasts (CEF) produced the more attenuated Schwarz and Moraten viruses, whose sequences have recently been shown to be identical (Combredet et al., 2003). The Moraten and Schwarz strains are highly genetically related, reflecting their common ancestry and similar passage history, and they are safe and effective for most children. Their use has dramatically reduced the incidence of measles, from over 100 million cases in the prevaccine era to approximately 31 million cases in 1997. However, fatal infections have been documented in immunodeficient children vaccinated with these strains (Valsamakis et al., 1999). GenBank Taxonomy No.: 132487

For more information on the various Schwarz strains

 

 

The Measles virus is monotypic, or in other words, there is only one serotype. The genetic differences among the various strains can cause variations in the clinical manifestations of infection. Since the Measles virus is monotypic, immunity against one strain can provide immunity against all strains. Even with various genotypes, the viral genomes have not deviated to produce multiple serotypes.

 

Vaccines:

The Edmonston strain of measles virus isolated in cell culture in 1954 (7) became the progenitor for many live attenuated measles vaccines such as Moraten, Schwarz, Zagreb and Edmonston B (8). Several measles strains were also used for the development of measles vaccines in other countries such as Russia, China and Japan. All these attenuated strains are used around the world and despite the differences in methods employed for attenuation of the original viruses, which involve various cell culture systems, incubation temperatures, and number of passages, remarkable nucleotide sequence similarity has been found among the strains (9).

A live attenuated vaccine (CAM-70) derived from a Japanese isolate has been used in Brazil since 1982. National vaccination campaigns achieved more than 95% coverage after the Brazilian Measles Eradication Program was established in 1992, although some epidemic outbreaks have occurred after the introduction of the program, mainly in 1997 (2,10)…

CAM-70 vaccine was developed in 1970 from the Tanabe strain in Japan by adaptation to the chorioallantoic membrane (CAM) of chick embryos (12-15). This vaccine has been produced at Bio-Manguinhos/FIOCRUZ since the early eighties by a technology transfer from the Biken Institute, Japan.

Since 1963, when both an inactivated and a live attenuated vaccine (Edmonston B strain) were licensed for use in the United States, both the type of measles vaccine and the recommended age for measles vaccination have changed several times. After 1967 and 1975, the inactivated and the Edmonston B vaccine, respectively, were no longer distributed. A live, further attenuated vaccine (Schwarz strain) was first introduced in 1965, and a similar vaccine (Moraten strain) was licensed in 1968. These further attenuated vaccines cause fewer reactions than the Edmonston B vaccine, yet are equally effective. The Moraten vaccine is the vaccine used currently in the United States.

 

ROUVAX-Live attenuated vaccine against measles (Schwartz strain)

 

Each vaccine dose contains:

Lyophilizate:

– Hyperattenuated live measles virus

SCHWARZ strain . . . . . . . . . . . . . . . . . ….. . at least 1000 CCID50*

– Human albumin . . . . . . . . . . . . . . . . . . . . . . . . … q.s. for lyophilization

Solvent:

– Water for injections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . q.s. 0.5 ml

*CCID50 = Cell culture infectious dose 50 percent.

This vaccine contains traces of neomycin.

This vaccine also contains lactose.

This vaccine is in conformity with WHO specifications.

 

M-M-R® II (MEASLES, MUMPS, and RUBELLA VIRUS VACCINE LIVE)

 
 

 

M-M-R* II (Measles, Mumps, and Rubella Virus Vaccine Live) is a live virus vaccine for vaccination against measles (rubeola), mumps, and rubella (German measles).

 

M-M-R II is a sterile lyophilized preparation of (1) ATTENUVAX* (Measles Virus Vaccine Live), a more attenuated line of measles virus, derived from Enders’ attenuated Edmonston strain and propagated in chick embryo cell culture; (2) MUMPSVAX* (Mumps Virus Vaccine Live), the Jeryl Lynn** (B level) strain of mumps virus propagated in chick embryo cell culture; and (3) MERUVAX* II (Rubella Virus Vaccine Live), the Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts.

 

The growth medium for measles and mumps is Medium 199 (a buffered salt solution containing vitamins and amino acids and supplemented with fetal bovine serum) containing SPGA (sucrose, phosphate, glutamate, and recombinant human albumin) as stabilizer and neomycin.

 

The reconstituted vaccine is for subcutaneous administration. Each 0.5 mL dose contains not less than 1,000 TCID50 (tissue culture infectious doses) of measles virus; 12,500 TCID50 of mumps virus; and 1,000 TCID50 of rubella virus. Each dose of the vaccine is calculated to contain sorbitol (14.5 mg), sodium phosphate, sucrose (1.9 mg), sodium chloride, hydrolyzed gelatin (14.5 mg), recombinant human albumin (≤0.3 mg), fetal bovine serum (<1 ppm), other buffer and media ingredients and approximately 25 mcg of neomycin. The product contains no preservative.

 

 

ATTENUVAX® (MEASLES VIRUS VACCINE LIVE)

 

ATTENUVAX* (Measles Virus Vaccine Live) is a live virus vaccine for vaccination against measles (rubeola).

 

ATTENUVAX is a sterile lyophilized preparation of a more attenuated line of measles virus derived from Enders’ attenuated Edmonston strain and propagated in chick embryo cell culture.

 

The growth medium for measles is Medium 199 (a buffered salt solution containing vitamins and amino acids and supplemented with fetal bovine serum) containing SPGA (sucrose, phosphate, glutamate, and human albumin) as stabilizer and neomycin. The cells, virus pools, fetal bovine serum, and human albumin are all screened for the absence of adventitious agents. Human albumin is processed using the Cohn cold ethanol fractionation procedure.

 

The reconstituted vaccine is for subcutaneous administration. Each 0.5 mL dose contains not less than 1,000 TCID50 (tissue culture infectious doses) of measles virus. Each dose of the vaccine is calculated to contain sorbitol (14.5 mg), sodium phosphate, sucrose (1.9 mg), sodium chloride, hydrolyzed gelatin (14.5 mg), human albumin (0.3 mg), fetal bovine serum (<1 ppm), other buffer and media ingredients and approximately 25 mcg of neomycin. The product contains no preservative.

 

ProQuad® Measles, Mumps, Rubella and Varicella Virus Vaccine Live

MMRV(Measles, Mumps, Rubella, Varicella) 

Has been suspended.

 

ProQuad* is a combined attenuated live virus vaccine containing measles, mumps, rubella, and varicella viruses. ProQuad is a sterile lyophilized preparation of (1) the components of M-M-R*II (Measles, Mumps and Rubella Virus Vaccine Live): Measles Virus Vaccine Live, a more attenuated line of measles virus, derived from Enders’ attenuated Edmonston strain and propagated in chick embryo cell culture; Mumps Virus Vaccine Live, the Jeryl Lynn™ (B level) strain of mumps virus propagated in chick embryo

cell culture; Rubella Virus Vaccine Live, the Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts; and (2) Varicella Virus Vaccine Live (Oka/Merck), the Oka/Merck strain of varicella-zoster virus propagated in MRC-5 cells. The cells, virus pools, bovine serum, and human albumin used in manufacturing are all tested to provide assurance that the final product is free of potential adventitious agents.

ProQuad, when reconstituted as directed, is a sterile preparation for subcutaneous administration.

Each 0.5-mL dose contains not less than 3.00 log10 TCID50 (50% tissue culture infectious dose) of measles virus; 4.30 log10 TCID50 of mumps virus; 3.00 log10 TCID50 of rubella virus; and a minimum of 3.99 log10 PFU (plaque-forming units) of Oka/Merck varicella virus.

 

 

 

Killed Measles Vaccine (no longer used) 

 

Severe local reactions to live measles virus vaccine following an immunization program.

Am J Public Health. 1983 August; 73(8): 899–900.

 

killedmeaslesversion

 

 

Edmonston-Zagreb (high-titer vaccine)

 

“In an experiment to find out of they could give high-potency Edmonston Zagreb (EZ) measles vaccine to babies as young as four months old [completing disregarding developmental neurology and lack of myelinization in the nervous system of babies] in order to overwhelm their natural maternal antibodies and replace them with vaccine-induced antibodies, medical “researchers” at the CDC and Johns Hopkins University injected thousands of babies in the Third World with the experimental vaccine that reportedly caused chronic immune suppression and the deaths of an unknown number of babies. Also, in the United States, with the help of Kaiser Permanente, more than 1500 six-month old black and Hispanic babies in inner city Los Angeles were “enrolled” in the experiment starting in June 1990. [ During the administration of president and ex-CIA director George Bush.] The study was halted in October 1991, after more than one year of genocidal activity, after repeated reports from vaccine trial sites in Africa that girl babies were dying in higher than expected numbers six months to three years after injection. [A less-than-admirable population control effort.] “–Leading Edge http://www.cco.net/~trufax/vaccine/0696.html   Based on NVIC Vaccine Report 0696 Rec 9/3/96

 

Also see: MEASLES VACCINE EXPERIMENTS ON MINORITY CHILDREN TURN DEADLY

 

CDC Admits Informed Consent Violations – CDC director David Satcher admitted in a June 17 Los Angeles Times article that a National Institutes of Health (NIH) investigation of the 1990-91 Los Angeles study found that informed consent regulations had been violated because the parents were not told their babies would be injected with an experimental vaccine that had never been licensed by the FDA for use in America. Both Kaiser and the CDC have denied that any of the Los Angeles babies were harmed by the high potency EZ vaccine but did admit that one child, who received a standard potency EZ vaccine, died from a bacterial infection they maintain is unrelated to the vaccination.

 

The high potency EZ measles experiments began at four major sites in the mid-1980’s including Haiti, the Senegal, Guinea Bissau and Mexico. Other trials followed in Cameroon, Gambia, Bangladesh, Togo, Iran, New Guinea, Peru, Rwanda, Sudan, South Africa, Egypt, Philippines, Uzbekistan, Thailand, Zaire and Los Angeles. Primary funding came from the U.S. Agency for International Development (USAID) and the World Health Organization (WHO). In Haiti, infants were given the experimental vaccine at 10 to 500 times the usual dose levels. In a June 1996 article in Journal of Infectious Diseases, Johns Hopkins researchers report that infants with the highest antibody responses to high titer measles vaccine have the most profound immune suppression.

 

Warnings Ignored The measles vaccine experiment was only stopped two years after the director of one of the African sites warned the WHO and CDC experiment leaders in April 1990 that African mortality data raised a red flag about the high titer EZ vaccine. His reports were first ignored and then discounted and he was replaced as a principal investigator. After his mortality data was dismissed as incorrect for more than a year, with support from colleagues at Harvard, he published the mortality data in The Lancet in October 1991. WHO then called for all the sites to submit mortality data for independent analysis. The CDC has stated that enrollment for the LA study was halted in October 1991.

 

 

 

outrage1

 

outrage2

 

 

EDMONSTON-ZAGREB MEASLES VACCINE PROJECT

 

Studies comparing Edmonston-Zagreb (EZ) measles vaccine with Schwartz measles vaccine in young infants (four to nine months of age) have been conducted in several developing countries, including Guinea-Bissau, Senegal, Haiti, Gambia, Togo, and the Philippines.

 

These studies revealed high seroconversion rates with EZ vaccine even in the presence of high maternal measles antibody. Several of these studies that used high-dose (4.84 In TCID50) EZ measles vaccine found increased mortality predominantly or exclusively among African female infants immunized with high-dose EZ measles vaccine. In these cases, death occurred approximately one year after vaccination. The causes of these deaths are common causes of infant and child mortality in Third World settings, e.g., respiratory infections, diarrhea and dehydration. Data from these, as well as other studies which did not find higher mortality post-vaccination, were reviewed during a two-day meeting organized by the Expanded Programme on Immunization (EPI), World Health Organization (WHO), in February 1991. Principal investigators of the major clinical trials of EZ vaccine and an international panel of experts attended the meeting and reviewed the data. The panel felt that the probability that the higher mortality was due to the vaccine was very low. Among the reasons cited was the lack of biologic plausibility, particularly in reference to the sex-specific findings.

 

DIPLOVAX HDC 4.0Freeze-dried measles vaccine produced from the Edmonston-Zagreb strain which has been further attenuated in human diploid cells.

 

The vaccine contains live, attentuated measles virus of the Edmonston-Zagreb strain, propagated in human diploid cells. Each dose of 0.5 mL contains at least 104 CCID50 (cell culture infective doses) of live measles virus. The vaccine is stabilized with a 10% gelatin-sorbitol stabiliser. The freeze-dried vaccine is reconstituted with 0,5 mL Sterile Water for Injections per dose.

 

TRESIVAC™

 

…is prepared from live attenuated strains of Edmonston-Zagreb Measles virus propagated on human diploid cell culture, L-Zagreb Mumps virus propagated on chick embryo fibroblast cells and Wistar RA 27/3 Rubella virus propagated on human diploid cell culture.


The reconstituted vaccine contains, in single dose of 0.5 ml. not less than
1000 CCID50 of Measles virus
5000 CCID50 of Mumps virus
1000 CCID50 of Rubella virus.
Diluent : Sterile water for injection.
The vaccine meets the requirements of USP and WHO when tested by the methods outlined in USP and WHO, TRS 840 (1994).

 

 

Measles virus are divided into 21 genotypes

 

Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras   (Virology Journal 2005, 2:87)

 

Although measles virus (MV) is serologically monotypic, the genetic characterization of wild-type viruses has identified eight clades (A – H), which have been divided into 22 genotypes and one proposed genotype. Clades B, C, D, G and H each contain multiple genotypes (B1 – 3, C1 – 2, D1 – 10, G1 – 3, H1 – 2) while clades A, E and F each contain a single genotype (A, E, F) [1,2]. The sequences of the vaccine strains indicate that the wild type viruses from which they were derived were all members of genotype A. All measles genotypes can be neutralized by serum from vaccinated persons in vitro, although with varying efficiency [3,4]. There are no known biological differences between viruses of different genotypes. Specific measles genotypes are not associated with differences in severity of disease, likelihood of developing severe sequela such as subacute sclerosing panencephalitis or inclusion body encephalitis, or variability in sensitivity of laboratory diagnosis.

Review of the temporal and geographical distribution of measles virus genotypes 1951 – 2004

 

 

Although measles virus (MV) is serologically monotypic, the genetic characterization of wild-type viruses has identified eight clades (A – H), which have been divided into 22 genotypes and one proposed genotype. Clades B, C, D, G and H each contain multiple genotypes (B1 – 3, C1 – 2, D1 – 10, G1 – 3, H1 – 2) while clades A, E and F each contain a single genotype (A, E, F). The sequences of the vaccine strains indicate that the wild type viruses from which they were derived were all members of genotype A.
There are no known biological differences between viruses of different genotypes. Specific measles genotypes are not associated with differences in severity of disease, likelihood of developing severe sequela such as subacute sclerosing panencephalitis or inclusion body encephalitis, or variability in sensitivity of laboratory diagnosis.


Analysis of the variability in the nucleotide sequences of wild-type MVs has enabled the use of molecular epidemiologic techniques for measles surveillance. Genetic characterization of viral isolates or RT-PCR products is the only laboratory test that can differentiate between vaccine-associated cases and wild-type infection.


In 1998, the World Health Organization (WHO) recommended a standard protocol for the designation of measles genotypes. The minimum amount of sequence data required to assign a virus to a genotype are the 450 nucleotides encoding the carboxy terminus of the N protein. The entire sequence of the coding region of the H gene should be obtained from representative isolates.

 
The purpose of this summary is to collate all available reports of MV genotypes and to standardize the published genotype nomenclature, according to the current WHO criteria, with the aim of giving a comprehensive overview of the distribution of MV genotypes in the prevaccine and postvaccine eras.

Summary of distribution of MV genotypes from the prevaccine era to 2004

measlesgenotype

Genetic Diversity of Wild-Type Measles Viruses: Implications for Global Measles Elimination Programs

measlesmap

Figure 4. Change in genetic groups of measles viruses associated with U.S. cases and outbreaks between 1988 and September 1997. Arrows indicate sources of virus, if known.

 

Pneumococcal

Pneumococcal

 

Pneumococcal is also known as S. pneumoniae or pneumococcal meningitis.

 

Staphylococcus aureus is a common commensal of humans and its primary habitat is the moist squamous epithelium of the anterior nares (1). About 20% of the population are always colonized with S. aureus, 60% are intermittent carriers, and 20% never carry the organism. As there is considerable evidence that carriage is an important risk factor for invasive infection (1, 2), it is surprising that so little is known about the bacterial factors that promote colonization of squamous epithelial surfaces and the host factors that determine whether an individual can be colonized or not.

 

Healthy individuals have a small but finite risk of contracting an invasive infection caused by S. aureus, and this risk is increased among carriers. Hospital patients who are catheterized or who have been treated surgically have a significantly higher rate of infection. In some, but not all, developed countries, many nosocomial infections are caused by S. aureus strains that are multiply resistant to antibiotics — known as methicillin-resistant Staphylococcus aureus (MRSA) (3, 4) — although the acronym MRSA is somewhat misleading because the semisynthetic β-lactam methicillin is no longer used to treat S. aureus infections….

 

…only Staphylococcus aureus and Staphylococcus epidermidis are significant in their interactions with humans. S. aureus colonizes mainly the nasal passages, but it may be found regularly in most other anatomical locales, including the the skin, oral cavity and gastrointestinal tract. S epidermidis is an inhabitant of the skin.

 

 

 

Vaccines:

 

For Adults:

There are more than 90 different types of pneumococcus bacteria-23 of these are covered in the current vaccination. The vaccine is injected into the body to stimulate the normal immune system to produce antibodies that are directed against pneumococcus bacteria. Pneumococcal vaccination does not protect against pneumonia caused by microbes other than pneumococcus bacteria, nor does it protect against pneumococcal bacteria strains not included in the vaccine…

pnemotypes

PNEUMOVAX® 23 (PNEUMOCOCCAL VACCINE POLYVALENT) 

 

Pneumococcal 23-valent polysaccharide vaccine is used in adults and selected children 24 months or older to stimulate active immunity to infection caused by the serotypes of S. pneumoniae contained in the vaccine.100 102 115 129 The vaccine commercially available in the US contains 23 capsular antigens that represent at least 85–90% of the serotypes that cause invasive pneumococcal infection in adults and children in the US.115

BRIEFING DOCUMENT Pneumococcal Adult Vaccine OPEN SESSION VRBPAC Meeting November 17th 2005

 

pnuemo2

 

 

 

For Children:

 

The heptavalent pneumococcal conjugate vaccine (PCV7) is recommended for use in children 23 months of age and younger. Although other pneumococcal vaccines are available, PCV7 represents the first pneumococcal vaccine approved for use in children younger than age 2.

 

Pneumococcal 7-valent Conjugate Vaccine (Diphtheria CRM197 Protein) Prevnar®
FOR PEDIATRIC USE ONLY

 

PCV7 protects against seven pneumococcal capsular types (serotypes)—4, 6B, 9V, 14, 18C, 19F, and 23F

 

Licensed or In Development:

 

Potential Impact of Conjugate Pneumococcal Vaccines on Pediatric Pneumococcal Diseases

  

GSK’s paediatric pneumococcal candidate vaccine Synflorix™ receives positive opinion in Europe

Synflorix™

The paediatric vaccine is proposed to be indicated for active immunisation against invasive pneumococcal disease (IPD) and middle ear infections (acute otitis media) caused by Streptococcus pneumoniae in infants and children from 6 weeks up to 2 years. The European Marketing Authorisation for the vaccine is expected to be granted in the coming months. 10-valent pneumococcal vaccine.  Of these strains, serotypes 1 and 7F are on the rise in several Europe an countries and in many other parts of the world.6,7,8,9 The 10 serotypes included in GSK’s candidate vaccine are responsible for up to 90% of IPD in young children, and are responsible for a significant proportion of IPD globally.

Synflorix™ GSK’s candidate vaccine is a 10-valent, pneumococcal conjugate vaccine. It was designed with polysaccharides derived from 10 different strains of pneumococcus. Eight are linked to a novel carrier protein ‘D’ derived from a second major paediatric pathogen – non-typeable Haemophilus influenzae (NTHi)13. This novel carrier protein is intended to minimise the possibility of immune interference when co-administered with other vaccines.14 GSK’s robust clinical development programme includes trials in Europe, as well as Africa, Asia and Latin America. Antibody responses to co-administered paediatric vaccines are similar to those observed when the vaccine is given alone, indicating that the candidate vaccine does not interfere with these co-administered paediatric vaccines.15

A prototype 11-valent pneumococcal vaccine formulation, which used the same novel approach in conjugation technology and contained the 10 serotypes covered by the current candidate vaccine (along with another serotype for which efficacy was not demonstrated), offered 33.6 % reduction of clinical acute otitis media in a European trial.16

GSK’s pneumococcal candidate vaccine is expected to deliver broad public health benefit by offering coverage against three additional pneumococcal strains (serotypes 1, 5 and 7F) on top of the seven serotypes (4, 6B, 9V, 14, 18C, 19F, 23F) which are covered in the existing paediatric pneumococcal vaccine.1 Serotypes 1, 5 and 7F are responsible for a significant burden of disease, accounting for 5-25% of all IPD cases.4

Synflorix;

Streptorix; Pneumococcal non-typeable Haemophilus influenzae Protein D conjugate vaccine; PHiD-CV; Streptococcus pnuemoniae capsular antigens–Haemophilus influenzae protein D conjugates vaccine.

 

5th International Symposium on Pneumococci and Pneumococcal Diseases

 

 

pnemoserotypes

 

Public health potential of a 13vPnC vaccine for immunization of adults in the US PO4.07

Hackell, JG, Paradiso, PR, Siber, G

Wyeth Vaccines Research, Pearl River, NY, USA

 

The 13-valent pneumococcal conjugate (13vPnC) vaccine covers fewer serotypes than the 23-valent polysaccharide (23vPS) vaccine, but potentially has the additional benefits of a conjugate vaccine. This includes the ability to extend protection throughout the high-risk period by allowing revaccination, if necessary, without risk of induction of hyporesponsiveness (blunting of subsequent immune response).

 

Fry et al1 at CDC developed a model to look at the relative potential public health impact of various pneumococcal conjugate formulations, as compared to the currently available 23vPS vaccine in adults >65 years of age. The authors found a significant benefit of the conjugate vaccines based on the potential for more durable immunity and perhaps higher efficacy. We updated this model, using the rate of invasive pneumococcal disease (IPD) observed in 2004 (significantly lower than the 1998 data used in Fry et al). We also expanded the analysis to include 50-64 year olds. We assumed that 13vPnC had the same level of efficacy for the serotypes in the vaccine as 23vPS, but a longer duration of immunity, that could be sustained either through the induction of memory or through re-immunization, if needed.

 

We assumed vaccine uptake to be 60%, comparable to the current estimates for 23vPS uptake in >65 year olds. Similar to the original Fry et al estimates, the model predicts that more cases of IPD could be prevented with the 13vPnC vaccine compared to the cases currently prevented with the 23vPS vaccine (5544 vs 2979). The same is true for deaths due to IPD (895 vs 489). This is due in

part to the ability to extend the age of initial vaccination down to 50 years of age without the risk of diminished immune responsiveness later in life, and in part due to the ability to maintain immunity throughout the entire high-risk period.

(1Fry AM et al. Comparing potential benefits of new pneumococcal vaccines with the current polysaccharide vaccine in the elderly. Vaccine 2002; 21:303-311.)

 

 

Study Evaluating 13-Valent Pneumococcal Conjugate Vaccine In Healthy Infants

*in development

 

PCV13 includes the 13 most prevalent pneumococcal serotypes associated with serious PD. Seven of these (4, 6B, 9V, 14, 18C, 19F and 23F) are included in Prevenar* (Pneumococcal saccharide conjugated vaccine, adsorbed) — the current global standard in PD prevention in infants and young children. The six additional serotypes (1, 3, 5, 6A, 7F and 19A) are associated with the greatest burden of remaining invasive disease. Both Prevenar (also known as PCV7) and PCV13 use CRM197 — an immunological carrier protein with a 20-year history of use in pediatric vaccines.

 

Earlier this year, the U.S. Food and Drug Administration (FDA) granted Fast Track designation to PCV13 for infants and toddlers. Fast Track designation is designed to facilitate review of products for serious or life-threatening conditions for which there is an unmet medical need. The Company expects to complete its U.S. filing for pediatric use of the vaccine in the first quarter of 2009, while initiating other pediatric filings in the near term. PCV13 is also being studied in global Phase 3 clinical trials in adults, with regulatory filings expected in 2010.

 

 

 

Update on Investigational 13-Valent Pneumococcal Conjugate Vaccine Dr. Peter Paradiso.  Wyeth Vaccines  (ACIP meeting 10/23/08)

 

Dr. Paradiso presented an update on investigational 13-valent pneumococcal conjugate vaccine. The current 7-valent vaccine, PREVNAR®, contains the serotypes that were the most prevalent in the US at the time this vaccine was launched (e.g., 4, 6B, 9V, 14,18C, 19F, and 23F). The 13-valent vaccine, PCV13, includes those seven serotypes and an additional six new conjugate vaccines covering serotypes 1, 3, 5, 6A, 7F, and 19A. The seven components that

are common within the vaccine are essentially identical in dosage and form to those found in PREVNAR® (e.g., 2 μg of each of those serotypes, except for 6B which is 4 μg). The six new serotypes are all conjugates of the same carrier protein as the original seven types in PREVNAR® (e.g., CRM197), using the same chemistry of reductive amination to the polysaccharide and in a dosage of 2 μg of each of those serotypes. Thus, the 13-valent vaccine essentially takes the PREVNAR® vaccine in its dosage form and adds the six new serotypes that make 13 all together. It is important to point this out, particularly as it relates to the seven original types, because the transition anticipated from 7-valent to 13-valent will be facilitated by the fact that those seven types are common and it should be possible to switch to the 13-valent at any point in the immunization program.

 

 

When considering the assessment of a new conjugate vaccine, the situation is different from that of developing PREVNAR®, given that PREVNAR® is now on the market. Thus immunogenicity must be considered as the correlate or the way to assess the new vaccine.  Wyeth has had some assistance in that consideration from many groups, particularly the World Health Organization, who have reviewed the data regarding efficacy and immune response for

PREVNAR® and established criteria by which they can consider comparing a new vaccine to an old vaccine. Weyth’s clinical trials are set up to compare the 13-valent vaccine to the standard of care, the 7-valent vaccine. The serological criteria used to assess PCV13 immunogenicity for the common serotypes in PREVNAR® and PCV13 are to examine non-inferiority to PCV7 in the percentage of children achieving > 0.35 ug/ml anticapsular antibody, and the non-inferiority toPCV7 types in geometric mean antibody concentration. For the six additional serotypes in PCV13, a comparison is made to the original types to examine non-inferiority in the percentage of children achieving 0.35 ug/ml anticapsular antibody compared to the lowest responses in PCV7, and non-inferiority in geometric mean anticapsular antibody concentration compared to the lowest responses in PCV7. In considering the entire immune response, good functional antibody that correlates with overall immunogenicity is an important parameter, given that it is

essential to show that a functional response is induced with the six new types and that this response correlates with the overall antibody response. For the immunization program and long-term immunity, boostability in the second year of life is also examined within a schedule that has been used for many conjugate vaccines over the years. There are additional predetermined analyses that may be examined should the primary criteria not be met. Wyeth is currently completing their Phase 3 Clinical Pediatric Program, which is extensive and global.

 

Wyeth is also in a Phase 3 program examining PCV13 for adults with the goals of studying the indication for the prevention of pneumococcal disease in adults; induction of a functional immune response in individuals >18 yrs of age that is non-inferior / superior to the polysaccharide; induction of immunological memory that allows periodic boosting of immunity; demonstration of no hyporesponsiveness; and ability to overcome hyporesponsiveness induced

by the polysaccharide. Unfortunately, the preliminary data show that those who have had the polysaccharide vaccine are hyporesponsive not only to another polysaccharide vaccine, but also to a conjugate vaccine. Therefore, a component of the program will be to examine whether that hyporesponsiveness can be overcome with a dose of the conjugate vaccine and be set up for a future booster of that response. This study is particularly focused on adults 58 years of age and older, but will go down to 18 years of age. This study will also include a large-scale effectiveness trial that just began in the Netherlands.

 

 

6th International Symposium on Pneumococci and Pneumococcal Diseases  8–12 June 2008, Reykjavik, Iceland

 

(pg 13)…The success and failure of pneumococcal clones depends on host, environmental and bacterial factors. Important host and environmental factors are immunity, heredity and antibiotic use. The widespread use of antibiotics and vaccination of children with a conjugated pneumococcal vaccine has provided an unprecedented selective pressure on pneumococci. Before the introduction of the 7-valent Prevnar vaccine in the United States in the year 2000, penicillin non-susceptible pneumococci had become 26% of all invasive isolates, but decreased following vaccination to 22% (2004, all ages). At the same time the proportion of clones belonging to serotype 19A increased from 2.5% to 36% (children ≤5 years old). Drastic changes in prevalence may also be unrelated to vaccination and antibiotic

use. Pneumococcal clones can spread in an epidemic fashion, apparently unrelated to external factors. A multidrug-resistant clone of serotype 19A increased markedly in the Bedouin population of southern Israel in the absence of vaccination, and the multidrugresistant clone Spain6B-ST90 spread fast and reached 19% of pneumococci carried by

healthy children in an Icelandic community with limited antimicrobial use. The bacterial factors related to successful spread are not known but surface pili could be important….

 

 

S10-KS2 Towards a protein-based vaccine against Streptococcus pneumoniae (pg.22)

 

The existing conjugated 7-valent Prevnar vaccine (PCV7) is effective against bacteremia and meningitis, when caused by the seven CPS serotypes included in the vaccine. However the pneumococcal serotype distribution changes dramatically from region to region, and in some developing countries PCV7 covers less than one third of disease causing strains. Furthermore, few years after the introduction of PCV7 in the US, phenomena of serotype replacement have been clearly demonstrated, thus limiting the overall effectiveness of the vaccine also in developed countries. Second-generation extended coverage glycoconjugate are in late stage of development, however, they will only partially address the unmet serotype coverage needs…

 

S12-KS1 Pneumococcal carriage and transmission (pg 27)

 

The pneumooccus is a normal component of nasopharyngeal flora and carriage is the reservoir of bacteria transmitted to others and a source of disease causing pneumococci in the host.

The prevalence of colonization varies greatly globally, by age and by serotype. The main reasons for this are the differences in the exposure and the host immunity. The exposure is affected by several factors like family size, day care attendance and viral infections. Transmission of pneumococci is characterised by microepidemics within families and day care facilities….

 

…Pneumococcal carriage induces production of antibodies to pneumocccal protein and polysaccharide antigens, but the role of these ’natural’ antibodies in prevention subsequent acquisition has been addressed in only few studies. These studies suggest that antipolysaccharide antibodies, at least to certain serotypes, can be associated with the risk of

subsequent colonization. Epidemiological studies among Israeli children suggest that previous colonization can prevent homotypic colonization, while a study among Bangladeshi infants could not show homotypic but showed heterotypic protection. A study using human colonization model found association of anti-protein antibodies, but not of antipolysaccharide antibodies and type 23F pneumococcal colonization. Animal studies suggest that CD4 T cells rather than antibodies offer the main mechanism for protection against colonization. Finally, studies on human mucosal T cells and cytokine production suggest that cell mediated immunity has a role in prevention and termination of pneumococcal carriage.

 

 

P1-017 Population-based strain surveillance of invasive serotype 19A pneumococci recovered in the United States: 2006 (pg 96)

 

Background: Pneumococcal serotype 19A has increased in frequency as a cause of invasive

disease since introduction of the 7 valent pneumococcal conjugate vaccine (PCV7) in the

U.S. in 2000. Serotype 19A isolates have become increasingly resistant, primarily because of

the rapid emergence of clonal complex (CC) 320 isolates highly related to multi-resistant

clone Taiwan19F-14, but also through the emergence of other strains.We assessed all available invasive isolates and predicted 19A disease rates from areas under continuous surveillance from1999 -2006 through CDC’s Active Bacterial Core surveillance (ABCs, about 18 million persons)…

Results: Serotype 19A incidence has been incrementally increasing annually. Between 1999 and 2005 incidence increased more than 3-fold in children < 5 years (from 2.6 cases/100,000 to 8.9 cases/100,000). Incidence of serotype 19A disease in this age group further increased to 10.7 cases/100,000 during 2006. Between 1999 and 2005, the proportion of 19A isolates from all age groups that were penicillin-resistant (MICs > 2 ug/ml) increased from 6.7% to 35% and further increased to 36.2% during 2006. The CC320 complex increased from 21% of type 19A during 2005 isolates to 24% during 2006. Other 19A strains that appear to be derived from major PCV7-serotype strains increased during 2006 relative to 2005.

Conclusions: These updated results indicate that serotype 19A continues to increase as a cause of invasive disease and resistant infections. While most of the increase in resistant infections is related to a single CC, multiple strains are contributing to the problem.

 

5th International Symposium on Pneumococci and Pneumococcal Diseases

 

pneumvax5

 

 

5th International Symposium on Pneumococci and Pneumococcal Diseases (pg 260)

 

 pnemovax4

 

 

 

 

5th International Symposium on Pneumococci and Pneumococcal Diseases (pg 269)

 

pneumvax51

 

Pneumococcal Resistance

 

…pneumococcal strains with decreased susceptibility to penicillin were identified in Australia and New Guinea in the 1960s and in South Africa in the 1970s. Isolates nonsusceptible (minimal inhibitory concentration [MIC] ≥0.1 µg/mL) or resistant (MIC ≥2.0 µg/mL) to penicillin and other antimicrobial agents became increasingly prevalent in many other countries during the 1980s. Drug-resistant strains were relatively uncommon in the United States (US) throughout the 1980s and penicillin remained the drug of choice for empiric treatment of life-threatening pneumococcal infections. However, a rapid increase in the prevalence of isolates nonsusceptible or resistant to penicillin occurred in the US during the late 1980s and early 1990s (Figure 1). In some parts of the US, over 35% of pneumococcal isolates are now nonsusceptible to penicillin. Concomitant with the emergence of penicillin-resistant strains, pneumococci with decreased susceptibility to other classes of antimicrobial agents also became more prevalent, making selection of therapy difficult. Strains susceptible only to vancomycin have been isolated…

 

 

Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States

 

The Centers for Disease Control and Prevention (CDC) has been monitoring invasive pneumococcal disease since 1995 through the Active Bacterial Core (ABC) surveillance program [6,14,30] and as a result, the post-vaccination increase in nonvaccine serotype 19A disease in the US was quickly detected. Serotype 19A strains collected by the CDC through 2005 were genotyped by MLST, which revealed that vaccine escape strains had begun to emerge in 2003 [14,15]. These strains possessed an MLST genotype, ST695, that had always been associated with vaccine serotype 4 (ST6954), but now expressed a serotype 19A capsule (ST69519A). These strains were detected only 3 y after vaccine implementation, but rapidly increased in prevalence. The first three strains were detected in 2003; two strains were detected in 2004; and 32 strains were detected in 2005, some of which had evolved further. Moreover, in 2005, two new types of serotype 19A vaccine escape strains emerged, ST236519A (n = 4) and ST89919A (n = 1); these appeared to represent new recombinational events that also occurred between serotype 4 recipients and serotype 19A donors. The aim of this study was to sequence the regions upstream and downstream of the capsular locus, including both PBPs, to identify the putative recombinational event(s) that resulted in these vaccine escape strains.

 

Haemophilus Influenzae

Haemophilus Influenzae

 

The HIB vaccine is solely for capsulated Haemophilus B, not non encapsulated Hib.  The HIB vaccine is solely for invasive Hib disease caused by capsular Hib. It has no effect on any other type of Hib disease. You can’t make a Hib vaccine for non-encapsular HIB. Due to the recommended and rountine use of Hib conjugate vaccine, at least half of invasive H influenzae infections are now caused by the nonencapsulated strains.

 

There are six strains of H. influenzae that have been classified (types a through f) and other non-typeable strains. Type b is responsible for 95 percent of all strains causing invasive disease. Invasive Hib disease usually manifests itself clinically as meningitis, accounting for 50 to 65 percent of all cases.

 

HIB vaccines are available as a single vaccine or in combination vaccines and four conjugate Hib vaccines are currently available:

Monovalent Hib vaccines:

PedvaxHIB® [Merck] [Haemophilus b Conjugate Vaccine (Meningococcal Protein Conjugate)] PedvaxHIB* [Haemophilus b Conjugate Vaccine (Meningococcal Protein Conjugate)] is a highly purified capsular polysaccharide (polyribosylribitol phosphate or PRP) of Haemophilusinfluenzae type b (Haemophilus b, Ross strain) that is covalently bound to an outer membrane protein complex (OMPC) of the B11 strain of Neisseria meningitidis serogroup B. Each 0.5 mL dose of Liquid PedvaxHIB is a sterile product formulated to contain: 7.5 mcg of Haemophilus b PRP, 125 mcg of Neisseria meningitidis OMPC and 225 mcg of aluminum as amorphous aluminum hydroxyphosphate sulfate (previously referred to as aluminum hydroxide), in 0.9% sodium chloride, but does not contain lactose or thimerosal.

 

 

 

 ActHib [sanofi pasteur] The vaccine consists of the Haemophilus b capsular polysaccharide (polyribosyl-ribitol-phosphate, PRP), a high molecular weight polymer prepared from the Haemophilus influenzae type b (HiB) strain 1482 grown in a semi-synthetic medium, covalently bound to tetanus toxoid.1 The lyophilized ActHIB vaccine powder and saline diluent contain no preservative. The tetanus toxoid is prepared by extraction, ammonium sulfate purification, and formalin inactivation of the toxin from cultures of Clostridium tetani (Harvard strain) grown in a modified Mueller and Miller medium.

 

Combination vaccines:

COMVAX® (Hib/hepatitis B vaccine) [Merck] [HAEMOPHILUS b CONJUGATE (MENINGOCOCCAL PROTEIN CONJUGATE) and HEPATITIS B (RECOMBINANT) VACCINE]

COMVAX* [Haemophilus b Conjugate (Meningococcal Protein Conjugate) and Hepatitis B (Recombinant) Vaccine] is a sterile bivalent vaccine made of the antigenic components used in producing PedvaxHIB* [Haemophilus b Conjugate Vaccine (Meningococcal Protein Conjugate)] and RECOMBIVAX HB* [Hepatitis B Vaccine (Recombinant)]. These components are the Haemophilus influenzae type b capsular polysaccharide [polyribosylribitol phosphate (PRP)] that is covalently bound to

an outer membrane protein complex (OMPC) of Neisseria meningitidis and hepatitis B surface antigen (HBsAg) from recombinant yeast cultures. Haemophilus influenzae type b and Neisseria meningitidis serogroup B are grown in complex

fermentation media.

 

The PRP-OMPC conjugate is prepared by the chemical coupling of the highly purified PRP (polyribosylribitol phosphate) of Haemophilus influenzae type b (Haemophilus b, Ross strain) to an OMPC of the B11 strain of Neisseria meningitidis serogroup B. The coupling of the PRP to the OMPC is necessary for enhanced immunogenicity of the PRP. This coupling is confirmed by analysis of the components of the conjugate following chemical treatment which yields a unique amino acid. After conjugation, the aqueous bulk is then adsorbed onto an amorphous aluminum hydroxyphosphate sulfate adjuvant (previously referred to as aluminum hydroxide).

 TriHIBit® (diphtheria and tetanus toxoids and acellular pertussis [DTaP]/Hib vaccine) [sanofi pasteur]

When Tripedia vaccine is used to reconstitute ActHIB® [Haemophilus b Conjugate Vaccine (Tetanus Toxoid Conjugate)

manufactured by Aventis Pasteur SA] the combination vaccine is TriHIBit®. Each single 0.5 mL dose of TriHIBit vaccine for the

fourth dose only, is formulated to contain 6.7 Lf of diphtheria toxoid, 5 Lf of tetanus toxoid (both toxoids induce at least 2 units

of antitoxin per mL in the guinea pig potency test), 46.8 μg of pertussis antigens (approximately 23.4 μg of inactivated PT and

23.4 μg of FHA), 10 μg of purified Haemophilus influenzae type b capsular polysaccharide conjugated to 24 μg of inactivated tetanus toxoid, and 8.5% sucrose. (Refer to ActHIB vaccine package insert.)

 

 

HibTITER  HAEMOPHILUS b CONJUGATE VACCINE  (Diphtheria CRM197 Protein Conjugate)

 

Haemophilus b Conjugate Vaccine (Diphtheria CRM197 Protein Conjugate) HibTITER is a sterile solution of a conjugate of oligosaccharides of the capsular antigen of Haemophilus influenzae type b (Haemophilus b) and diphtheria CRM197 protein (CRM197) dissolved in 0.9% sodium chloride. The oligosaccharides are derived from highly purified capsular polysaccharide,

polyribosylribitol phosphate, isolated from Haemophilus b strain Eagan grown in a chemically defined medium (a mixture of mineral salts, amino acids, and cofactors).

 

Three conjugate Hib vaccines are licensed for use in infants as young as 6 weeks of age (see below). All three vaccines

utilize different carrier proteins. Two combination vaccines that contain Hib conjugate vaccine are also available.

 

 hibbrands1

 

 

 hibbrands2

 

 

 

 

HIB Vaccine Timeline and History Tidbits:

 

1970-1st hib vaccine

 

1980’s Conjugate vaccine for hib

 

1985-polysaccharide vaccine

Provoked Hib in rats (by causing transient immune suppression for 7 – 14 days) and also in humans.  
The polysaccharide vaccine was quietly swept under the rug. It continued to be used after 1987, but was rapidly replaced with the conjugate vaccine.

 

In 1985, the first Hib polysaccharide vaccines were licensed for use in the United States. These vaccines contained purified polyribosylribitol phosphate (PRP) capsular material from the type b serovar. Antibody against PRP was shown to be the primary component of serum bactericidal activity against the organism. PRP vaccines were ineffective in children less than 18 months of age because of the T-cell-independent nature of the immune response to PRP polysaccharide.

Conjugation of the PRP polysaccharide with protein carriers confers T-cell-dependent characteristics to the vaccine and substantially enhances the immunologic response to the PRP antigen. In 1989, the first Hib conjugate vaccines were licensed for use among children 15 months of age or older. In 1990, two new vaccines were approved for use among infants.

Haemophilus influenzae type b Polysaccharide-Protein Conjugate Vaccines

 

Conjugation is the process of chemically bonding a polysaccharide (a somewhat ineffective antigen) to a protein “carrier,” which is a more effective antigen. This process changes the polysaccharide from a T-independent to a T-dependent antigen and greatly improves immunogenicity, particularly in young children. In addition, repeat doses of Hib conjugate vaccines elicit booster responses and allow maturation of class-specific immunity with predominance of IgG antibody. The Hib conjugates also cause carrier priming and elicit antibody to “useful” carrier protein. The first Hib conjugate vaccine (PRP-D, ProHIBIT) was licensed in December 1987. This vaccine was not consistently immunogenic in children younger than 18 months of age.

 

PRP-D is no longer available in the United States.

 

 

 

Haemophilus influenzae is a small, nonmotile Gram-negative bacterium in the family Pasteurellaceae,  on the level with the Vibrionaceae and the Enterobacteriaceae. The family also includes Pasteurella and Actinobacillus, two other genera of bacteria that are parasites of animals.  Encapsulated strains of Haemophilus influenzae isolated from cerebrospinal fluid are coccobacilli, 0.2 to 0.3 to 0.5 to 0.8 um, similar in morphology to Bordetella pertussis, the agent of whooping cough. Non encapsulated organisms from sputum are pleomorphic and often exhibit long threads and filaments. The organism may appear Gram-positive unless the Gram stain procedure is very carefully carried out. Furthermore, elongated forms from sputum may exhibit bipolar staining, leading to an erroneous diagnosis of Streptococcus pneumoniae.

 

 

 

hib1

 

 

 

 

Seven serotypes of the bacterium have been identified on the basis of capsular polysaccharides. Until the implementation of widespread vaccination programs, type b H. influenzae was the most common cause of meningitis in children between the ages of 6 months and 2 years (see Figure 4 below), resulting in 12,000 to 20,000 cases annually in the U.S. It would be interesting to view comparative data since the era of vaccination against H. influenzae meningitis, which began in 1985. Certainly, there are fewer than 100 cases annually of bacterial meningitis caused by H. influenzae type b.

 

*bloggers note..type g has since been identified.

 

 

hib2

 

 

 

 

Two variants among Haemophilus influenzae serotype b strains with distinct bcs4, hcsA and hcsB genes display differences in expression of the polysaccharide capsule

 

Background

Despite nearly complete vaccine coverage, a small number of fully vaccinated children in the Netherlands have experienced invasive disease caused by Haemophilus influenzae serotype b (Hib). This increase started in 2002, nine years after the introduction of nationwide vaccination in the Netherlands. The capsular polysaccharide of Hib is used as a conjugate vaccine to protect against Hib disease. To evaluate the possible rise of escape variants, explaining the increased number of vaccine failures we analyzed the composition of the capsular genes and the expressed polysaccharide of Dutch Hib strains collected before and after the introduction of Hib vaccination.

 

Differences in Genetic and Transcriptional Organization of the glpTQ Operons between Haemophilus influenzae Type b and Nontypeable Strains

 

Haemophilus influenzae is a common pathogen, especially among children, but the clinical manifestations are largely type specific. The encapsulated H. influenzae serotype b (Hib) usually causes invasive infections, such as meningitis and septicemia (2), whereas the much more common nonencapsulated, or nontypeable, H. influenzae (NTHi) is a major cause of otitis media, sinusitis, and pneumonia (8). General vaccination against Hib has reduced the incidence of Hib infection to a near minimum (10), while attempts to construct a vaccine against the costly NTHi infections have as yet been unsuccessful due to a high genetic heterogeneity among NTHi strains.

 

 

hib5

 

 

Meningococcal Meningitis Strains

N. meningitidis strains are grouped on the basis of their capsular polysaccharides. There are at least 13 serogroups, some of which are subdivided according to the presence of outer membrane protein and lipopolysaccharide antigens.

Meningococcal capsular polysaccharides provide the basis for grouping the organism. Twelve serogroups have been identified (A, B, C, H, I, K, L, X, Y, Z, 29E, and W135). The most important serogroups associated with disease in humans are A, B, C, Y, and W135. The chemical composition of these capsular polysaccharides is known. The prominent outer membrane proteins of N. meningitidis have been designated class 1 through class 5. The class 2 and 3 proteins function as porins and are analogous to gonococcal Por. The class 4 and 5 proteins are analogous to gonococcal Rmp and Opa, respectively. Serogroup B and C meningococci have been further subdivided on the basis of serotype determinants located on the class 2 and 3 proteins. A handful of serotypes are associated with most cases of meningococcal disease, whereas other serotypes within the same serogroup rarely cause disease. All known group A strains have the same protein serotype antigens in the outer membrane. Another serotyping system exists based on the antigenic diversity of meningococcal LOS (lipooligopolysaccharide).

  

Infection with N. meningitidiscan present in two ways. Either as meningococcemia, characterized by skin lesions, or as acute bacterial meningitis.

 Five predominant strains or serogroups of N. meningitidis account for most cases of meningococcal disease. These are A, B, C, Y, and W-135. The currently available capsular polysaccharide vaccines are available for four of the five strains (A, C, Y, and W-135) No vaccine is available for widespread vaccination against serogroup B.

The group B capsular polysaccharide is a homopolymer of sialic acid which is not immunogenic in humans. A group B meningococcal vaccine consisting of outer membrane protein antigens has been developed, but is not licensed in the United States. Polysaccharide vaccines are ineffective in young children. In children under 1 year old, antibody levels decline rapidly after immunization.The duration of protection is also limited in children vaccinated at 1 to 4 years of age.  Routine vaccination is not currently recommended due to the risk of infection as being classified as low.

  

There are two vaccines against N. meningitidis available in the U.S.

Meningococcal polysaccharide vaccine (MPSV4 or Menomune®) has been approved by the Food and Drug Administration (FDA) and available since 1981.

Meningococcal conjugate vaccine (MCV4 or MenactraT) was licensed in 2005. Both vaccines can prevent 4 types of meningococcal disease, including 2 of the 3 types most common in the U.S. (serogroup C, Y, and W-135) and a type that causes epidemics in Africa (serogroup A).

Meningococcal vaccines cannot prevent all types of the disease.

 MCV4 is recommended for all children at their routine preadolescent visit (11 to 12 years of age). MCV4 is the preferred vaccine for people 11 to 55 years of age in these risk groups, but MPSV4 can be used if MCV4 is not available. MPSV4 should be used for children 2 to 10 years old and adults over 55, who are at risk.

  

MPSV4: Meningococcal Polysaccharide Vaccine, Groups A, C, Y and W-135 Combined

Menomune® – A/C/Y/W-135

 Menomune® – A/C/Y/W-135, Meningococcal Polysaccharide Vaccine, Groups A, C, Y and W-135 Combined, for subcutaneous use, is a freeze-dried preparation of the group-specific polysaccharide antigens from Neisseria meningitidis, Group A, Group C, Group Y and Group W-135. N meningitidis are cultivated with Mueller Hinton agar1 and Watson Scherp2 media. The purified polysaccharide is extracted from the Neisseria meningitidis cells and separated from the media by procedures which include centrifugation, detergent precipitation, alcohol precipitation, solvent or organic extraction and diafiltration. No preservative is added during manufacture.

The 0.78 mL vial of diluent contains sterile, preservative-free, pyrogen-free distilled water and is used for reconstitution of product supplied in 1 mL vials. The 6 mL vial of diluent contains sterile, pyrogen-free distilled water to which thimerosal (mercury derivative) 1:10,000 is added as a preservative. The 6 mL vial is for reconstitution of product supplied in 10 mL vials.

After reconstitution with diluent as indicated on the label, the 0.5 mL dose is formulated to contain 50 μg of “isolated product” from each of Groups A, C, Y and W-135 in an isotonic sodium chloride solution.

 

 MCV4: Meningococcal (Groups A, C, Y and W-135) Polysaccharide Diphtheria Toxoid Conjugate Vaccine Menactra®

 

Menactra®, Meningococcal (Groups A, C, Y and W-135) Polysaccharide Diphtheria Toxoid Conjugate Vaccine, is a sterile, intramuscularly administered vaccine that contains Neisseria meningitidis serogroup A, C, Y and W-135 capsular polysaccharide antigens individually conjugated to diphtheria toxoid protein. N meningitidis A, C, Y and W-135 strains are cultured on Mueller Hinton agar1 and grown in Watson Scherp2 media. The polysaccharides are extracted from the N meningitidis cells and purified by centrifugation, detergent precipitation, alcohol precipitation, solvent extraction and diafiltration. To prepare the polysaccharides for conjugation, they are depolymerized, derivatized, and purified by diafiltration. Corynebacterium diphtheriae cultures are grown in a modified Mueller and Miller medium3 and detoxified with formaldehyde. The diphtheria toxoid protein is purified by ammonium sulfate fractionation and diafiltration. The derivatized polysaccharides are covalently linked to diphtheria toxoid and purified by serial diafiltration. The four meningococcal components, present as individual serogroupspecific glycoconjugates, compose the final formulated vaccine. No preservative or adjuvant is added during manufacture.

Potency of Menactra vaccine is determined by quantifying the amount of each polysaccharide antigen that is conjugated to diphtheria toxoid protein and the amount of unconjugated polysaccharide present.

Menactra vaccine is manufactured as a sterile, clear to slightly turbid liquid. Each 0.5 mL dose of vaccine is formulated in sodium phosphate buffered isotonic sodium chloride solution to contain 4 μg each of meningococcal A, C, Y, and W-135 polysaccharides conjugated to approximately 48 μg of diphtheria toxoid protein carrier.

 

 Advantages of Meningococcal Conjugate Vaccines (ACIP meeting May 27, 2005 / 54(RR07); 1-21)

Bacterial polysaccharides, including those comprising the capsule of N. meningitdis, are T-cell–independent antigens. T-cell–independent antigens do not elicit a memory response; they stimulate mature B-lymphocytes but not T-lymphocytes, thus inducing a response that is neither long-lasting nor characterized by an anamnestic response after subsequent challenge with the same polysaccharide antigen (72). Thus, meningococcal polysaccharide vaccines have inherent limitations. The serogroup C polysaccharide is poorly immunogenic among children aged <2 years (73–75). The A polysaccharide induces antibody response in infants, but vaccine efficacy declines rapidly (64). Meningococcal polysaccharide vaccines do not confer long-lasting immunity (61,64); they also do not cause a sustainable reduction of nasopharyngeal carriage of N. meningitdis (76,77) and therefore do not substantially interrupt transmission to elicit herd immunity. Finally, multiple doses of serogroup A and C polysaccharide vaccine might cause immunologic hyporesponsiveness to the group A (56,57) and C (58,59) polysaccharide, although clinical implications of this phenomenon are unknown.

Conjugation (i.e., covalent coupling) of polysaccharide to a protein carrier that contains T-cell epitopes changes the nature of immune response to polysaccharide from T-cell–independent to T-cell–dependent, leading to a substantial primary response among infants and a strong anamnestic response at re-exposure (78). Both conjugate Hib and conjugate S. pneumoniae vaccines (introduced for mass infant immunization in the United States in 1990 and 2000, respectively) have reduced incidence of disease caused by vaccine-preventable serotypes (1,79). In addition, both vaccines reduce asymptomatic carriage of respective bacteria (80–82), thus protecting unvaccinated persons through a herd immunity effect (1).

 

What was said in 1990 in regards to polysaccharide vaccine:

 Notice to Readers Availability of Meningococcal Vaccine in Single-Dose Vials for Travelers and High-Risk Persons (MMWR Weekly October 26, 1990 / 39(42);763)

The Food and Drug Administration has approved a single-dose vial of quadrivalent polysaccharide vaccine against Neisseria meningitidis serogroups A, C, Y, and W135. The single-dose vial replaces the previously available 10-dose vial, which, once reconstituted, has a 5-day shelf life. This limitation is obviated by the single-dose vial and should facilitate administration to persons at high risk.

Immunization is recommended for persons with anatomic or functional asplenia and deficiencies of the terminal components of the complement system. Additionally, travelers to areas with hyperendemic or epidemic meningococcal disease should be immunized (1). Updated travel advisories can be obtained from travelers’ clinics, county and state health departments, and CDC.

The vaccine is not recommended for routine use in the United States for three reasons: 1) meningococcal disease is infrequent (approximately 3000 cases per year); 2) no vaccine exists for serogroup B, which accounts for about 50% of cases in the United States; and 3) vaccine is not efficacious against group C disease in children less than 2 years of age (2). This age group accounts for 28% of the group C cases in the United States (CDC, unpublished data).

In adults, the protective efficacy of the vaccine is 85%-95% for disease caused by serogroups A or C (3, 4). Efficacy data are not available for serogroups Y and W135, but the vaccine is immunogenic for both of these serogroups (5-7). Side effects of the vaccine are mild and infrequent, consisting primarily of erythema and induration at the site of injection and low-grade fever. Protective immunity is achieved 10-14 days after vaccination.

Meningococcal lipopolysaccharides: virulence factor and potential vaccine component.  (Microbiol Rev. 1993 March; 57(1): 34–49. PMCID: PMC372900)

meningitsstarins

ChickenPox/Shingles Strains

Identification of Five Major and Two Minor Genotypes of Varicella-Zoster Virus Strains: a Practical Two-Amplicon Approach Used To Genotype Clinical Isolates in Australia and New Zealand

 

Whole genome phylogenetic analysis in this study resolved a total of five major genotypes among the 22 varicella-zoster virus (VZV) strains or isolates for which complete genomic sequences are available.

cpstarins2

Acquiring one strain can result in immunity to all strains of the virus. In some cases, however, complete immunity is not attained and an individual can become re-infected.

Shingles, or herpes zoster, this is a later reactivation of latent virus. It can occur any time after the initial infection. Usually, it occurs years later, and is activated by stress or an unbalanced immune system.

Varicella Zoster Virus

VZV is a member of the herpes virus group or (alpha) herpes virus 3, and it is a DNA virus. VZV can persist as a latent infection in dorsal root or extra medullary cranial ganglia.

  

Toward Universal Varicella-Zoster Virus (VZV) Genotyping: Diversity of VZV Strains from France and Spain

 

…wild-type varicella-zoster virus (VZV) strains to seven genotypes: A1, A2, J1, B1, B2, C, and C1. VZV isolates identified as E (ORF22 method) had the genetic signature of genotype C VZV strains, M1 strains were A1, and M2 were A2. No J strains were detected, but parental Oka and vaccine Oka (genotype J) corresponded to genotype J1. M4 isolates (B) share the SNP array observed for M1 and E viruses, and probably represent recombinants between African-Asian (M1) and European (E) viruses. The two genotyping methods, using entirely different genomic targets, produced identical clusters for the strains examined, suggesting robust phylogenetic linkages among VZV strains circulating in Europe.

cpstarins

pOka is the parental Oka strain from which varicella vaccine was derived. Sequence positions are based on the published genomic sequence for the Dumas strain. Green cells indicate European genotype (E) markers; yellow cells are Japanese genotype (J) markers, rose cells are markers unique to various M genotype variants, and uncolored cells reflect markers that are consistent across genotypes. ND, not determined.

The Immunological Basis for Immunization Series    Module 10: Varicella

VZV is a member of the herpesvirus family. It has 71 genes, all of which are expressed in lytic infection and seven of which are expressed in latent infection (5). Only neurons support latent infection. There is one serotype, but several genotypes are known, with small differences in their DNAs, classified as European, Japanese, and Mosaic (6). Recently, 3% of VZV strains circulating in the United States of America have been identified as Japanese type (7).

VZV was successfully attenuated by Takahashi and colleagues in 1974, by serial passage of a clinical isolate from an otherwise healthy boy with chickenpox (13).

Attenuation was achieved by passage 11 times at 34ºC in human embryonic lung fibroblasts (HELF), 12 passages at 37ºC in guinea-pig fibroblasts, and 5 to 6 passages in MRC -5 human fibroblasts at 37ºC. Infected cell suspensions were sonicated to obtain cell-free VZV.Standard safety-testing after injection into small mammals was also performed, and did not identify any adventitious agents.

Varicella vaccines contain a mixture of Oka and parental strains (14-16). Sequencing of the Dumas strain of wild-type VZV, and the Oka strain, has shown that there are 42 differing bases, over one third of which are in gene 62.Three fixed mutations have been identified in Oka strains present in skin rashes of vaccinees, all located in gene 62 (15,17,18). Although the genetic basis for attenuation is still unknown, it is possible to differentiate Oka from wild-type VZV by PCR in clinical specimens (8).

Monovalent varicella vaccine is produced in the United States (VarivaxTM; Merck & Co., Inc.), the Kingdom of Belgium (VarilrixTM; GlaxoSmithKline), and Japan (OKAVAX™; Biken, distributed by Aventis Pasteur). These vaccines vary slightly in passage number in human diploid cells, antibiotics for sterility, stabilizers and minor constituents. Each preparation guarantees 1350 plaque forming units (PFU) per 0.5 ml at expiration; doses at release vary from 3 000 to 17 000 PFU.

Combination vaccines for measles-mumps-rubella-varicella (MMRV) are produced by Merck (ProQuadTM)and GSK (Priorix-TetraTM). MMRV vaccines are licensed for children 12 months to 12 years old. They contain the same measlesmumps-rubella (MMR) components as MMR vaccine, but have a higher concentration of Oka varicella vaccine (~ 10 000 PFU at expiration) than monovalent varicella vaccines.

A formulation of the Oka strain containing~ 17 000 PFU (ZostavaxTM), is used for prevention of zoster when administered to healthy adults above the age of 60 years.

VARIVAX® Varicella Virus Vaccine Live

 

VARIVAX* [Varicella Virus Vaccine Live] is a preparation of the Oka/Merck strain of live, attenuated varicella virus. The virus was initially obtained from a child with natural varicella, then introduced into human embryonic lung cell cultures, adapted to and propagated in embryonic guinea pig cell cultures and finally propagated in human diploid cell cultures (WI-38). Further passage of the virus for varicella vaccine was performed at Merck Research Laboratories (MRL) in human diploid cell cultures (MRC-5) that were free of adventitious agents. This live, attenuated varicella vaccine is a lyophilized preparation containing sucrose, phosphate, glutamate, and processed gelatin as stabilizers.

 

ZOSTAVAX® Zoster Vaccine Live

 

ZOSTAVAX is a lyophilized preparation of live, attenuated varicella-zoster virus (Oka/Merck) to be reconstituted with sterile diluent to give a single dose suspension with a minimum of 19,400 PFU (plaque forming units) when stored at room temperature for up to 30 minutes.

 

ProQuad® Measles, Mumps, Rubella and Varicella Virus Vaccine Live

(no longer available until further notice)

 

ProQuad* is a combined attenuated live virus vaccine containing measles, mumps, rubella, and varicella viruses. ProQuad is a sterile lyophilized preparation of (1) the components of M-M-R*II (Measles, Mumps and Rubella Virus Vaccine Live): Measles Virus Vaccine Live, a more attenuated line of measles virus, derived from Enders’ attenuated Edmonston strain and propagated in chick embryo cell culture; Mumps Virus Vaccine Live, the Jeryl Lynn™ (B level) strain of mumps virus propagated in chick embryo cell culture; Rubella Virus Vaccine Live, the Wistar RA 27/3 strain of live attenuated rubella virus propagated in WI-38 human diploid lung fibroblasts; and (2) Varicella Virus Vaccine Live (Oka/Merck), the Oka/Merck strain of varicella-zoster virus propagated in MRC-5 cells. The cells, virus pools, bovine serum, and human albumin used in manufacturing are all tested to provide assurance that the final product is free of potential adventitious agents.

ProQuad, when reconstituted as directed, is a sterile preparation for subcutaneous administration. Each 0.5-mL dose contains not less than 3.00 log10 TCID50 (50% tissue culture infectious dose) of measles virus; 4.30 log10 TCID50 of mumps virus; 3.00 log10 TCID50 of rubella virus; and a minimum of 3.99 log10 PFU (plaque-forming units) of Oka/Merck varicella virus.